


We have so far considered R and its properties (including the Archimedean and density) and sequence limits. Our next

concern is on nested intervals





By an interval A we mean a subset of R which can be expressed as one of the following types (with real numbers a, b and 
symbols ‘positive infinity’ and ‘negative infinity’ with a < b): 

































Theorem (characterisation of intervals).  
Let A be a nonempty  subset of R. Then it is an interval if and only if it is (order-) convex in the sense that 



  (*) (x, y) is contained in A whenever x, y belong to A and x <y 
( each element z of (a, b) can be represented as a convex combination of a and b, as 

  	 z = ta+(1-t)b with t: = (z-a)/(b-a) so the terminology)

 
Proof. Only need to show the sufficiency part; thus assume A satisfies (*). Separately consider four cases.



Case 1: A is bounded in the sense that A is bounded below and above. Hence a: =inf (A) and b: =sup(A) exist in R.

Then   (a, b) is contained in A , and A is contained in [a,b], namely  

                        







Indeed, the 2nd inclusion is obvious by definitions of a and b. For the 1st let t be from (a,b):  a<t<b. Then (WHY?) t is 

neither a lower bound nor an upper bound of A, and so there exist some x and y in A such that x<t<y; it follows from

(*) that t belongs to A. Thus the displayed line is shown. Since [a,b] \ (a,b) consists exactly two points, I leave as an exercise for 
you to show then that A must be one of the intervals (a,b), (a,b], [a,b), [a,b].



Case 2: A is bounded below but not above. Then a: =inf A exists in R as before. Moreover



	 (a, positive infinity) is contained in A, and A is contained in [a, positive infinity), namely









(so one of the inclusions is actually the equality because these sets differ at most by one point). Again we only need 

to prove the 1st inclusion in (2). For this, let 
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Case 3:  A is bounded above but not below. You are invited to supply your proof similar as for case 2.



Case 4. A is not bounded  above nor below. Let z be any real number. Then 

z is not an upper bound nor a lower bound of A and so x < z < y for some x, y in A and hence, by (*), z is in A (for 

real number z). Therefore. A = R.



The proof of this Theorem is complete 
 
Nested interval theorem.   Let  
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